2.1: Algebraic Expressions

- Algebra uses letters, called variables, such as x and y, to represent numbers.
- Algebraic expressions are combinations of variables and numbers using the operations of addition, subtraction, multiplication, or division as well as exponents or radicals.
- Examples of algebraic expressions:

Evaluating an Algebraic Expression

Evaluate: $7 + 5(x-4)^3$ for x = 6

Substitute the value of x in the algebraic expression and simplify.

Solution:

 $7 + 5(x-4)^3 = 7 + 5(6-4)^3$ Replace *x* with 6

 $= 7 + 5(2)^3$ Solve inside parentheses

Copyright © 2016 R.M. Laurie

- = 7 + 5(8) Evaluate exponent
- = 7 + 40 Multiply

$$= 47$$
 Add

Order of Operations Agreement = PEMDAS

- Perform operations from within innermost grouping symbols to include [{ () }] Horizontal Division bars are also considered grouping symbols separating a numerator group from a denominator group
- 2. Evaluate all exponential expressions
- 3. Perform multiplications and divisions as they occur, working from <u>left to right</u>
- 4. Perform additions and subtractions as they occur, working from <u>left to right</u>

```
Copyright © 2016 R.M. Laurie
```


Algebraic Expressions Terminology

- Terms: Those parts of an algebraic expression separated by addition or subtraction.
- * Example: in the expression 7x 9y 3
 - ◆ Coefficient: The numerical part of a term. 7, -9, -3
 - ◆ Constant: A term that consists of just a number, also called a constant term. -3
 - Like terms: Terms that have the exact same variable factors and exponents. 7x and 3x
 - Factors: Parts of each term that are multiplied 7x, $-2 \cdot 3 \cdot 5$, $4 \cdot a \cdot c$
 - ◆ Collecting like terms utilizes distributive property $7x + 3 + 2x - 9y + 5 + 3y \rightarrow 9x - 6y + 8$

Copyright © 2016 R.M. Laurie 📕 7

2.2: Simplifying Algebraic Expressions

Use the Real Number I	Properties to simplify expressions	
Commutative Property of	Addition	
a + b = b + a	$13x^2 + 7x = 7x + 13x^2$	
Commutative Property of	Multiplication	
ab = ba	$x \cdot 6 = 6 \cdot x$	
Associative Property of Ac	ddition	
(a+b)+c = a+(b+c)	3 + (8 + x) = (3 + 8) + x = 11 + x	
Associative Property of M	ultiplication	
(ab)c = a(bc)	$-2(3x) = (-2 \cdot 3)x = -6x$	
Distributive Property		
a(b + c) = ab + ac	$5(3x + 7) = 5 \cdot 3x + 5 \cdot 7 = 15x + 35$	
a(b-c) = ab - ac	$4(2x-5) = 4 \cdot 2x - 4 \cdot 5 = 8x - 20$	
	Copyright © 2016 R.M. Laurie	6

Simplifying Algebraic Expressions		
Simplify: 5(3x – 7) – 6x Solution:		
5(3x - 7) - 6x = $5 \cdot 3x - 5 \cdot 7 - 6x$ distributive p	property	
= $15x - 35 - 6x$ multiply = $(15x - 6x) - 35$ group like terms	rms	
= 9X -35 Combine like terms	5	

Copyright © 2016 R.M. Laurie 8

Simplifying Algebraic Expressions		
$12x^2y - 3xy^2 - 15x^2y + 10xy^2$	Prob 2.2.29	
15x - 12 - (4x + 9) - 8	Prob 2.2.39	
$(5x^2 - 3x - 9) - (x^2 - 5x - 9)$	Prob 2.2.47	
$4 - 5[2(5x - 4^2) - (12x - 3^2)]$	Prob 2.2.55	
	Copyright © 2016 R.M. Laurie	

Solving Using Properties of Equality

The Addition Property of Equality

The same real number or algebraic expression may be added to both sides of an equation without changing the equation's solution set.

a = b and a + c = b + c are equivalent

a = b and a - c = b - c are equivalent

The Multiplication Property of Equality

The same nonzero real number may multiply both sides of equation without changing the equation's solution set. a = b and $a \cdot c = b \cdot c$ are equivalent

a = b and $\frac{a}{c} = \frac{b}{c}$ are equivalent

Using Properties of Equality to Solve Equations

Equation	How to Isolate x	Solving the Equation	The Equation's Solution Set
x - 3 = 8	Add 3 to both sides.	x - 3 + 3 = 8 + 3 x = 11	{11}
x + 7 = -15	Subtract 7 from both sides.	$\begin{array}{r} x + 7 - 7 = -15 - 7 \\ x = -22 \end{array}$	{-22}
6x = 30	Divide both sides by 6 (or multiply both sides by $\frac{1}{6}$).	$\frac{\frac{6x}{6}}{x=5} = \frac{30}{6}$	{5}
$\frac{x}{5} = 9$	Multiply both sides by 5.	$5 \cdot \frac{x}{5} = 5 \cdot 9$ $x = 45$	{45}

Solving a Linear Equation

- Simplify the algebraic expression on each side by removing grouping symbols (apply distributive property) and combining like terms.
- 2. Collect all the variable terms on one side and all the constants, or numerical terms, on the other side.
- 3. Isolate the variable and solve.
- 4. Check the proposed solution in the original equation.

Copyright © 2016 R.M. Laurie

13

Example: 2(x - 4) - 5x = -5

Alternate Solution: Clear fractions first We are interested in the intensity of a negative life event with an average level of depression of 3 1/2for the high humor group. $D = \frac{1}{9}x + \frac{26}{9}$ 63 = 2x + 5263 - 52 = 2x + 52 - 52**Clear Fractions by multiplying** 11 = 2xboths sides by LCD = 911 2x $9 \cdot D = 9\left(\frac{1}{9}x + \frac{26}{9}\right)$ $\frac{\frac{11}{2}}{\frac{11}{2}}$ 2 $9 \cdot D = x + 26$ = xSubstitute $\frac{7}{2}$ for D $x = \frac{11}{2}$ $\frac{1}{1} \cdot \frac{1}{2} = x + 26$ 63 = 2(x + 26)**Clear Fractions by multiplying both** sides by of above by LCD = 2Copyright © 2016 R.M. Laurie 16

Linear Equations with No Solution

*Solve: 2x + 6 = 2(x + 4)*Solution: 2x + 6 = 2(x + 4) 2x + 6 = 2x + 8 2x + 6 - 2x = 2x + 8 - 2x 6 = 8*The original equation 2x + 6 = 2(x + 4) is equivalent to 6 = 8, which is false for every value of x. The equation has no solution. The solution set is Ø, the empty set.

Solving Linear Equations		
4x - 3 = 13	Prob 2.3.19	
7 - 2x = 3	Prob 2.3.23	
-3(x-5) = 6 - 4(2x-1)	Prob 2.3.31	
27 - 3(x + 4) = 4x - (2x - 20)	Prob 2.3.35	
-	Copyright © 2016 R.M. Laurie	

Linear Equations with Infinitely Many Solutions

2.4: Formulas = Literal Equations * Formula is an equation that uses letters to express a relationship between two or more quantities represented by variables ***** Mathematical modeling is the process of finding formulas to describe real-world phenomena $C = \pi \cdot d = \pi \cdot (2 \cdot r) = 2 \cdot \pi \cdot r$ ***** Let's determine value of Pi experimentally. $\pi = \frac{C}{d}$

